
PICAXE Optimisations

Tips and Tricks for Making Your Code Fit

Program optimisation is an art, but based upon scientific

principles and technical observations.

Copyright (C) 2004 - The Happy Hippy

Before considering optimisations for PICAXE code, it is important to realise that

most optimisations will make your program code less readable, less

understandable, less maintainable, and harder to debug than unoptimised code.

It is therefore recommended that all but the simplest optimisations should be

left until your code has been completed, tested and debugged. This may not

however always be possible when you are running out of program code space

before your code is finished. In such circumstances it is recommended to apply

as few optimisations as possible to make your program code fit.

Unless there is a real need to perform optimisation it is often better practice to

leave the code unoptimised. And if you do implement any optimisations it is wise

to document what you have done, and why, in your program source code, if you

wish to understand the code when you return to it at a later date, or pass it on to

another PICAXE programmer.

Most of the lower-end PICAXE's are pretty constrained devices when it comes to

the amount of program code which they can hold; quite often just 128 or 256

bytes of program which may have to be shared with EEPROM data. It can

therefore be a challenge to make your program fit into the available space -

There is nothing worse than adding a single line of code only to find that you

have suddenly exceeded the maximum amount of memory available.

The art of making a program fit into the available space is called 'optimisation', and there are

two sorts; optimising for speed of execution, and optimising for minimal program code space.

The two are often mutually exclusive as a compact program, usually with loops, needs all

those loops unrolling into repeated sequential code to gain a speed advantage, and vice-versa.

For the PICAXE however, it is quite common that optimisations to reduce code space will also

speed up the program because of the way the PICAXE holds its program in memory.

Unlike a traditional microcontroller where a single instruction takes multiple numbers of

locations in program code memory, the PICAXE uses a system where the instructions are not

of a fixed size. This means that the shorter the instructions it needs to use the more that can

be fitted into the available code memory, and the shorter the instructions, the quicker (in

general) they are to execute.

The optimisations detailed here are all designed to reduce the program code size and

hopefully increase the speed of execution. Speed may not always be increased though because,

if an instruction is placed into memory such that it overlaps two consecutive memory

locations, and that's quite likely, then it will take slightly longer to execute. The loss of

execution speed may be regained elsewhere by other optimisations which improve it, and it is

a small price to pay to make the program fit which is often far more important than the raw

execution speed.

Numbers

The first thing to know is that the larger the value of a constant (a number), the more

program memory bits it will use; a 0 or 1 requires four bits, 2 to 15 requires seven bits, 16 to

255 require 11 bits while 256 to 65,535 require 19 bits. Using the smallest numbers you can

may achieve great savings.

Suppose you want to take the inputs from Pin 6 and Pin 5 and turn these into a value in 'b0' of

between 0 and 3. One obvious solution would be ...

 b0 = pins & %01100000 / %00100000

It works, but the '%01100000' is a number which requires 11 bits in total to represent it. If we

do the division before the '&' masking we can use ...

 b0 = pins / %00100000 & %00000011

It still works, but because '%00000011' only requires seven bits, we just saved four bits (over

30%) which can be used elsewhere.

Pin Numbers

The size of numbers is also important when it comes to instructions which operate on input

and output pins; "HIGH", "LOW", "PULSIN", "PULSOUT", "SERIN", "SEROUT" and others.

Using pins 0 or 1 adds just four bits to the instruction whereas using pins 3 to 7 adds seven

bits. Designing your hardware so your most commonly referred to pins within the code are

Pin 0 and Pin 1 can have a significant effect across a complete program.

Numbers in Variables

Variables require seven bits to represent themselves, so if you are using a large number a

multiple number of times it can make sense to put that value into a variable and use the

variable where the number would have been ...

 w0 = w1 & $1000 + $1000

can be rewritten as ...

 w2 = $1000

 w0 = w1 & w2 + w2

Although the initial assignment into 'w2' adds extra code, the net result is a saving of bits. Of

course, the more frequently a number is used, the greater the saving in total.

Optimising Variables

There are very few options for optimising variables. Unlike numbers they do not use different

sized representations depending on the variable used.

The only real optimisation which can be achieved is in assignments where the variable being

assigned to also appears as the first variable immediately on the right hand side of the '=' ...

 b0 = b0 + b1

 b0 = b0 + 1

are more program code space efficient than ...

 b0 = b1 + b0

 b0 = 1 + b0

Assignments using FOR

A rather clever trick, which can only be used in your program if you are not otherwise using

FOR..NEXT loops is to replace simple assignments which have no mathematical operations to

them with a 'FOR' statement ...

 b0 = 29

 b1 = b0

Can be replaced by ...

 FOR b0 = 29 TO 29 ' b0 = 29

 FOR b1 = b0 TO b0 ' b1 = b0

All the 'FOR' part of the FOR..NEXT loop does is to initialise what would be an index variable

with the value which appears immediately after the '=', the value after the 'TO' is redundant

and could actually be anything at all. The clever part of the FOR..NEXT loop is all associated

with the 'NEXT', which we won't be using, but the 'FOR' part assignment is a lot shorter than

the proper way of doing it.

There are two problems with this optimisation; firstly it is not easily seen that it is an

optimisation and not some coding error without some additional commentary explaining it,

and it will not work if you do need to use FOR..NEXT loops in your program, as the compiler

is likely to complain when you do a Syntax Check or attempt a download.

Redundant Assignment Operations

It is important to remember that the PICAXE compiler performs very few optimisations itself,

and it will generate code to do whatever you ask it to ...

 b0 = 0 + 0 + 0 + 0 + 0

will generate four completely redundant additions of zero, even though they will not have any

effect upon the value assigned to 'b0'. The same occurs if you divide or multiply by one and in

a number of other cases.

While it is relatively easy to spot redundant operations such as the example above, it is much

harder to spot them when named constants defined by 'SYMBOL' are used ...

 SYMBOL y = b0

 SYMBOL x = b1

 SYMBOL M = 2

 SYMBOL C = 1

 y = M * x + C

In this case there is no redundancy, but if M were zero or one, or C were zero then there would

be redundancy.

Named constants are a double-edged sword; while making your code more readable and

modifiable, they can also have the unwanted side-effect of using up excess program space.

The choice between using named constants or not is not an easy one to make.

Negative Numbers and Constant Arithmetic

Although the PICAXE deals only with positive numbers, two's complement arithmetic means

that negative numbers can be represented, and are often useful as in the following code ...

 GoUp:

 b0 = 1

 GOTO Go

 GoDown:

 b0 = 0-1 ' b0 = -1

 Go:

 b1 = b1+b0

The PICAXE does not allow 'b0=-1' and this has to be derived by using 'b0=0-1' as in the

above example. This uses an unnecessary 9 bits of program code. When we are subtracting

one constant from another, we will end up with another constant, so by pre-calculating that

result (0-1 is $FF in this case) we can simply replace the 'b0=0-1' with the equivalent

constant, 'b0=$FF'.

The same pre-calculations can be applied whenever the PICAXE is being instructed to

perform constant arithmetic itself, for example ...

 w0 = w0 * 2 * 1000 / 4

becomes ...

 w0 = w0 * 500

This technique is commonly known as "Constant Folding".

There are special cases to be careful of ...

 b0 = b0 * $8000 / $8000

In this example it would appear that multiplying by a number and then dividing by that same

number is a pointless operation which achieves nothing, however there is much more to it

than first meets the eye.

All arithmetic is performed using 16-bits, and a large multiplication, as above will cause a

result greater than 16-bits. Those bits above the bottom 16-bits are lost, and this can often be

used to great effect. The above code is actually a very poor way to do 'b0 = b0 & 1', and

constant folding would not give the result expected.

The same issues can apply with division followed by multiplication ...

 b0 = b0 / 4 * 4

This is equivalent to 'b0 = b0 & $FC', and again, constant folding will not give the result

desired.

Conditional Assignments

Often you will want to set a variable's value depending upon some condition or other, in a

pseudo design language ...

 IF pin0 = 0 THEN

 b0 = $0F

 ELSE

 b0 = $F0

 END IF

Using the PICAXE programming language, a reasonable implementation of the example is as

follows ...

 IF pin0 <> 0 THEN SetToF0

 SetTo0F:

 b0 = $0F

 GOTO SetDone

 SetToF0:

 b0 = $F0

 SetDone:

This can be optimised to ...

 b0 = $0F

 IF pin0 = 0 THEN SetDone

 b0 = $F0

 SetDone:

The same technique can be used when setting or clearing Digital Outputs but care must be

taken to ensure that 'glitches' caused by setting the Output incorrectly before setting it

correctly does not cause problems with the attached hardware ...

 LOW 0

 IF b0 = 0 THEN SetIoDone

 HIGH 0

 SetIoDone:

Optimised FOR..NEXT loops

There is very little which can be done to optimise FOR..NEXT loops; they use a fairly large

amount of program space, but then the equivalent inline code where a variable is initialised,

incremented or decremented and a conditional branch to the start of a loop uses just the same

amount.

The only significant savings can be made where a FOR..NEXT loop takes an index variable

between two pre-defined numbers, which is the case with most ...

 PrintSixteenStars:

 FOR b0 = 1 TO 16

 SEROUT TX_PIN, TX_BAUD, ("*")

 NEXT

 RETURN

The FOR..NEXT loop is defined as 'FOR b0 = 1 TO 16' because the loop needs to be executed

sixteen times; loop 1, loop 2, and so on through to loop 16.

Because the index variable 'b0' is not actually used within the loop, and is effectively used as a

simple count of how many times it has gone through the loop, it could equally be '11 TO 26' or

'2 TO 17', but the optimum is '0 TO 15', because, as we know, the program code space taken up

by numbers depends upon the value of the number and 0 and 1 use less program code than 2

and above, and 2 to 15 use less code space than 16 and above.

Although the change of the starting value from 1 to 0 makes no saving, changing 16 to 15 saves

four bits.

It is not always easy to optimise the FOR.NEXT values, especially where the index value needs

to be used within the loop, but you will be coding for maximum space saving if your

FOR..NEXT loop starts with value 0, and failing that, at value 1.

Redundant GOTO RETURN's

Having a 'GOTO' to a 'RETURN' statement is wasteful as the GOTO can simply be replaced by

a 'RETURN' ...

 GOTO Finished

 Finished:

 RETURN

Redundant GOSUB RETURN's

A 'GOSUB' followed by a RETURN can simply be replaced by a 'GOTO' to the subroutine. Not

doing so is wasteful in three of ways; it requires more code space, it takes longer to execute,

and it eats into the number of GOSUB's you may be allowed to have in your program.

 GOSUB MyRoutine

 RETURN

Should simply become ...

 GOTO MyRoutine

Wasteful GOSUB Allocation

If you are using a PICAXE which can support 256 GOSUB's but are using only 16 or less, then

you should configure the compiler to use just 16 GOSUB's as this will reduce the program

code required for each GOSUB.

LOOKUP versus READ and EEPROM

The 'LOOKUP' command can, in some circumstances, be fairly program space hungry and can

sometimes be implemented with less program memory used by using of 'READ' and

'EEPROM'. The two following code examples both turn a value of 0 to 3 held in 'b0' into a

character "A" to "D" put into 'b1' ...

 Convert:

 LOOKUP b0,("A","B","C","D"),b1

 RETURN

 Convert:

 READ b0,b1

 EEPROM 0,("A")

 EEPROM 1,("B")

 EEPROM 2,("C")

 EEPROM 3,("D")

 RETURN

Duplicated Textual Strings

It is worthwhile noting that specifying textual strings as opposed to individual characters

makes no program space saving. In the above example, using 'EEPROM 0,("ABCD")' would

save no program space at all.

Duplicated strings are however another entirely different matter, and are most likely to occur

when using the 'SEROUT' command to send information to an LCD or PC ...

 PlayerWins:

 SEROUT TX_PIN,TX_BAUD,("You are the winner")

 SEROUT TX_PIN,TX_BAUD,(CR,LF)

 RETURN

 ComputerWins:

 SEROUT TX_PIN,TX_BAUD,("I am the winner")

 SEROUT TX_PIN,TX_BAUD,(CR,LF)

 RETURN

Reasonably long duplicated strings may be removed into a separate, common routine while

still producing a net saving of program space ...

 PlayerWins:

 SEROUT TX_PIN,TX_BAUD,("You are")

 GOTO TheWinner

 ComputerWins:

 SEROUT TX_PIN,TX_BAUD,("I am")

 TheWinner:

 SEROUT TX_PIN,TX_BAUD,(" the winner")

 SEROUT TX_PIN,TX_BAUD,(CR,LF)

 RETURN

Consecutive SEROUT's

The 'SEROUT' command is fairly program space hungry and large savings can be made by

combining consecutive 'SEROUT' commands into one ...

 TheWinner:

 SEROUT TX_PIN,TX_BAUD,(" the winner")

 SEROUT TX_PIN,TX_BAUD,(CR,LF)

 RETURN

becomes ...

 TheWinner:

 SEROUT TX_PIN,TX_BAUD,(" the winner",CR,LF)

 RETURN

Duplicated Code

As with removing duplicated strings above, the same can be applied to any duplicated code ...

 RoutineOne:

 w0 = w0 * 2

 w1 = w1 + 1000

 RETURN

 RoutineTwo:

 w0 = w0 * 2

 w1 = w1 - 1000

 RETURN

The 'w0=w0*2' and RETURN are common to both routines, and as the assignment to 'w1' is

not dependant upon 'w0' the two routines can be re-ordered and optimised ...

 RoutineOne:

 w1 = w1 + 1000

 GOTO CommonCode

 RoutineTwo:

 w1 = w1 - 1000

 CommonCode:

 w0 = w0 * 2

 RETURN

SEROUT Pin Numbers

As mentioned earlier; referencing pins 0 and 1 uses less program code than any other pins, so

if you have a number of 'SEROUT' statements it makes sense to design your hardware so that

they are all reference Pin 0 or Pin 1 wherever possible.

Redundant Code

As the PICAXE will generate code for redundant operators during assignments, it will also

generate code for redundant statements; those statements which are never executed.

If you have any statements which are there because they, "may be used later", but are not

presently used, then it is wise to comment them out of the code until they are needed. It can

often be difficult to spot redundant code, especially when it is a subroutine which is never

called, and was written when you thought you may need it.

The END Statement

Do not put an 'END' statement as the last statement of your source code; the compiler will

always automatically insert one at the end of your program whether it is needed or not.

PICAXE is a trademark of Revolution Education Ltd. These PICAXE pages are produced entirely independently

of Revolution Education Limited and may not reflect the opinion of Revolution Education Limited or its agents.

The information provided is based upon and derived from information published by Revolution Education

Limited, other sources of PICAXE information and the author's own experiments and prior experience. The

views expressed by the author do not necessarily represent those of Revolution Education Limited or its agents.

While every effort has been made to ensure that the information on these PICAXE pages is accurate and correct,

the author can accept no responsibility for any errors or omissions which do occur. The information provided is

used entirely at your own risk.

First published on Thursday the 25th of February, 2004 at 14:38:14

Last upload was on Sunday the 25th of July, 2004 at 16:36:45

Edited by Ralph Bayer VE3XRM on Thursday the 19th of October, 2023 at 11:13:14

